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Abstract

Understanding large-scale brain dynamics re-
quires models that capture nonlinear structure
while remaining interpretable and biologically
grounded. Transformer architectures have shown
promise for time series modeling but offer
limited interpretability, restricting their use in
causal neuroscience and AI safety. We present
Neuro-Anatomical Transformers (NATs), a mod-
ular architecture designed to model pairwise
brain-region interactions while preserving trans-
parency. NATs use Region-Attention Blocks
(RABs), which mirror asymmetric neuroanatomy
and assign dedicated attention heads to distinct
region–region pathways. This structure maintains
separable, traceable information flow across lay-
ers, enabling direct analysis of internal circuits.
Unlike traditional AI models, which often func-
tion as opaque black boxes, NATs support white
box analysis and perturbation which is key for
identifying misalignment, reward hacking, or fail-
ure modes. These tools are essential for develop-
ing verifiable, interpretable AI systems, a grow-
ing need in AI safety. Current interpretability
approaches often retrofit transparency onto unin-
terpretable models; by contrast, NATs are trans-
parent by design. We view this work as a techni-
cal stepping stone toward whole-brain emulation,
which may offer a reference architecture for safer
agentic AI systems. NATs thus advance both neu-
roscience and AI alignment by linking biological
fidelity with structural transparency.

1. Introduction
Understanding large-scale, brain-wide neural dynamics re-
quires both high-resolution experimental data and computa-
tional tools capable of modeling the highly nonlinear and
distributed properties of neural systems. While transformer
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architectures have demonstrated remarkable success in cap-
turing long-range dependencies in domains such as natural
language (Vaswani et al., 2017a), their application to neuro-
science remains limited.

Recent efforts in the burgeoning field of NeuroAI, which
bridges neural data and artificial intelligence, have begun
to pave the way with transformer-based approaches to neu-
ral representations. For example, the Neural Data Trans-
former 2 (NDT2) specializes in modeling spatiotemporal
structure in neural spiking data and excels in transfer across
sessions, subjects, and behavioral contexts (Ye & Pandar-
inath, 2023). Similarly, SwiFT, a Swin-style 4D fMRI
transformer, directly learns from volumetric brain activity
to predict behavioral traits while maintaining spatial inter-
pretability (Kim et al., 2023). Transformer models have
also been applied to brain network graphs—such as in the
Brain Network Transformer, which uses pairwise connectiv-
ities between regions of interest (ROIs) to perform attention
computations and improve classification tasks (Kan et al.,
2022). Several studies have also demonstrated how enhanc-
ing transformer models with sparse autoencoders applied
to calcium imaging data can yield more interpretable latent
features aligned with neuroscience variables like stimulus
orientation (Freeman et al., 2025). At a broader theoretical
level, the emerging field of mechanistic interpretability in
transformers is drawing deeply from dynamical systems
theory, positioning transformer residual streams as evolving
trajectories (akin to neural dynamics) to uncover mecha-
nisms underlying model behavior (Fernando & Guitchounts,
2025).

There are several key challenges that remain including:
(i) the lack of architectures explicitly aligned with neu-
roanatomical connectivity, and (ii) the difficulty of inter-
preting learned representations in ways that support causal,
perturbation-driven analyses.

Here we focus on these specific challenges, in particular,
on investigating transformer-based NN architectures that
mimic or better capture the asymmetric bi-directional in-
teractions between brain regions. We introduce the Neuro-
Anatomical Transformer (NAT), a transformer-based neu-
ral network explicitly designed to model interactions be-
tween distinct brain regions. Central to NATs are the
Region-Attention-Block (RAB), a modular attention mech-
anism that models all pairwise region interactions via a
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type of cross-model attention. Each RAB is designed to
learn and capture distinct region-region pair interactions,
effectively mimicking the asymmetric interactions observed
across brain areas. This design ensures that distinct informa-
tion channels are preserved deep into the network, yielding
interpretable components. Importantly, this architecture
provides a natural pathway for in silico perturbations, en-
abling causal hypothesis testing on modeled dynamics, and
can be generalized to multimodal inputs for building more
comprehensive “world models” of neural computation.

We describe the NAT architecture below (see Section 2).
To demonstrate the potential of our approach, we applied
NATs to widefield calcium imaging data across 16 mouse
brain regions (Mitelut et al., 2022) (see Section 3). We
find that NATs match or can improve the performance of
standard transformers while offering significantly enhanced
interpretability and neuroanatomical fidelity.

1.1. NATs for AI Safety

We view NATs not only as a novel tool for modeling
mesoscale brain dynamics, but also as a technical contribu-
tion to the broader goals of AI safety and interpretability.
Their modular, anatomically grounded architecture makes
them a natural fit for building white-box cognitive models,
where internal processes can be traced, perturbed, and un-
derstood. This interpretability is crucial for identifying and
analyzing alignment-relevant failure modes such as reward
misgeneralization, deceptive behavior, and goal drift, which
are difficult to study in standard black-box deep learning
systems. Unlike conventional transformers that entangle
computations across layers, NATs preserve separable in-
formation channels. This allows for targeted circuit-level
interventions and causal analysis, which are essential fea-
tures for building auditable agentic systems aligned with
human intentions.

1.2. NATs for whole-brain-emulation

We also view NATs as a potential building block for whole-
brain emulation (WBE). Their biologically informed, region-
level design mirrors the structure of real nervous systems
and provides a scalable foundation for simulating increas-
ingly complex brains in silico. NATs can integrate real
neural recordings into predictive models while preserving
anatomical and functional structure, paving the way for cog-
nitive emulators with known internal dynamics. As WBE
emerges as a potential alternative path to AGI, NATs offer a
transparent and structured approach to modeling brain-like
agents. These models could serve as safety testbeds and
reference architectures for agentic AI systems whose goals
and reasoning can be understood, influenced, and aligned
with human values.

1.3. NATs for interpretability

We propose that NAT design could offer some advan-
tages over standard transformer multi-head-attention (MHA)
block desigsn.

Distribution of computational load. The NAT design dis-
tributes the computational load while maintaining a struc-
tured computational graph, ensuring gradients flow specif-
ically back to each region’s parameters. This can reduces
peak memory usage, enabling training with more regions on
limited hardware. Standard implementations store attention
weights and activations across all heads within a block, and
scaling to R2 heads quickly overwhelms memory. RABs
instead keep memory growth roughly O(RT 2) per block.

Segregation of information in attention block supports in-
terpretability. As proposed below, NATs compute attention
scores for each target-source regions - making module-level
comparisons interpretable and connecting observed dynam-
ics to anatomical origins. This enables for the interpretation
of all pair-wise area interactions deeper into the architecture
of our model.

Segregation of information at whole-transformer level.
While NATs support region-specific attention score compu-
tation - when coupled of similarly structured FFNs (see FFN
discussion below) - they can also preserve interpretability
at the whole-transformer level (see, e.g. Fig 3(a)). This po-
tentially makes it possible to create multi-layer NATs while
maintaining separability between region pairs.

2. Approach
We provide a detailed description of NATs that mostly fol-
lows the standard transformer (Vaswani et al., 2017b) struc-
ture - and explain where our approach differs.

2.1. Neural data representation

We define raw (post-processed) neural data time series from
a single source (e.g. brain area, neuron or voxel) as a vector:

d ∈ RT .

For R sources we can represent the input data as 2-
dimensional tensor:

D ∈ RR×T .

2.2. Embedding and dimensionality expansion

At the embedding stage, each scalar value in the T -long
time series is projected into a dmodel-dimensional embedding
space. This dimensionality expansion (used in previous
work) increases the representational capacity of each neural
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time point for each area and potentially allows for mixing
of information downstream.

Thus, each neural data value (i.e. scalar) becomes a vector:

dt ∈ Rdembed , t = 1, . . . , T.

and for R sources, our embedding is a 3-dimensional tensor:

E ∈ RR×T×dembed .

That is, each entry Dr,t of the raw data tensor is mapped to
an embedding vector

er,t ∈ Rdembed ,

so that
E = {er,t}r=1,...,R; t=1,...,T .

We note that we do not use positional embedding as part
of our approach - as we seek to develop continuous neural
time series models (rather than models for event or stimulus-
triggered data) and as such - the relative temporal locations
of data - do not have specific meaning. This is done without
loss of generalization - and a positional embedding step
could be added to our structure for specific applications.

2.3. Data flattening

In practice, we preserve the temporal structure while flatten-
ing across sources and embedding dimensions. That is, the
3D tensor

E ∈ RT×R×dembed

is reshaped into

X ∈ RT×(R·dembed).

and we arrive at standard residual stream size dmodel:

X ∈ RT×dmodel , dmodel = R · dembed.

Here, the dimension T corresponds to the sequence length.
In analogy to large language models (LLMs), it serves as
the context window (or token window) during training and
inference, i.e. the maximum number of time steps the model
can jointly attend to.

2.4. Attention block

Commonly used single-head transformer architectures are
based on an attention block which projects X onto Query,
Key, and Value matrices:

Q = XWQ, K = XWK , V = XWV ,

with learned projection matrices WQ,WK ,WV ∈
Rdmodel×dk . And self-attention would be defined as:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V,

where the softmax acts row-wise to normalize over sequence
positions.

2.5. Multi-Head Attention

Multi-head attention (MHA) is a commonly used architec-
ture for further expanding the capacity of the attention block.
Given the sequence input

X ∈ RT×dmodel , (1)

multi-head attention splits the feature dimension into h
heads of size dhead = dmodel/h.

For each head i = 1, . . . , h we compute

Qi = XWQ
i , WQ

i ∈ Rdmodel×dhead ,

Ki = XWK
i , WK

i ∈ Rdmodel×dhead ,

Vi = XWV
i , WV

i ∈ Rdmodel×dhead ,

(2)

so that Qi,Ki, Vi ∈ RT×dhead .

Each head applies scaled dot-product attention across the T
time steps:

headi = softmax

(
QiK

⊤
i√

dhead

)
Vi, headi ∈ RT×dhead . (3)

The head outputs are concatenated and projected back:

H = Concat(head1, . . . , headh) ∈ RT×(hdhead), (4)

so that:

MultiHead(X) = HWO ∈ RT×dmodel ,

WO ∈ R(hdhead)×dmodel ,
(5)

where WO serves as the fusion projection.

2.6. NAT attention block

Below we describe the Neuro-Anatomical Attention (NAT)
block and Region-Attention-Block (RABs) to replace the
standard MHA. We provide a broader discussion on the
differences with existing approaches in Appendix A.

2.7. Region-attention block (RAB)

We propose that NATs (i.e. single-layer attention blocks)
contain separate region-attention-blocks (RABs) that are
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Figure 1. Region-attention-block for single neural area
.

Figure 2. Single Head within RAB (ony 2-neural stream version
shown for simplicity)

.

tasked with mixing a single (neural area) time series with
all the all the others while preserving interpretability (Fig
1). RABs are constructed for each brain region with the
aim of capturing all region–region interactions, while also
preserving asymmetry by replicating all connections in both
directions.

Formally, each RAB corresponds to a single neural region -
r ∈ [R], that has access to both the full embedded input

X ∈ RR×T×d,

while carrying out a region-specific computation (Fig 1)

Xr ∈ RT×d.

Thus, within each RAB, we have R heads and each head
has unique query matrices as above, i.e.:

Qr,h = XrW
Q
r,h, h = 1, . . . ,H,

where H denotes the number of attention heads and WQ
r,h ∈

Rd×dh are learned projection matrices (Fig 2). In parallel,

for each region j ∈ [R], we compute region-specific key
and value projections:

Kj,h = XjW
K
j,h, Vj,h = XjW

V
j,h,

with learned matrices WK
j,h,W

V
j,h ∈ Rd×dh .

Thus, while each query Qr,h originates from the focal region
r, the keys and values (Kj,h, Vj,h) are derived from region
j. This allows each head in the RAB to align the queries
of region r with the representations of a specific region j
(including j = r).

The attention operation for head h comparing region r to
region j is defined as expected:

Attentionr→j,h(Qr,h,Kj,h, Vj,h) =

softmax

(
Qr,hK

⊤
j,h√

dh

)
Vj,h.

(6)

where the softmax normalizes across the temporal dimen-
sion T .

The outputs of all heads in region r are then concatenated
and passed through a learned fusion projection:

RABr(X) = Concat
(
{Attentionr→j,h}Rj=1,

h = 1, . . . ,H
)
WO

r ,
(7)

with
WO

r ∈ R(R·H·dh)×d. (8)

2.8. NAT feed forward NN architectures

We complete the NAT architecture with two architectural
options: a region preserving FFN module (Fig 3a); and (b) a
more common FFN module that mixes all signals (Fig 3b).

We provide results in the next section on the effect of the
two FFN architectures.

3. Results
We evaluated several architectures derived from the pro-
posed design. As a baseline, we trained a standard 1-layer
Transformer with multi-head attention (MHA) and a stan-
dard (shared) feed-forward network. We also trained NAT-
based models composed of region-attention-blocks (RABs),
with two variants of the feed-forward module: (a) region-
preserving FFNs, in which each RAB is paired with its
own local feed-forward network; and (b) a global FFN,
where outputs of all RABs are mixed by a single shared
feed-forward network (Fig. 3).

Figure 4 compares validation loss trajectories for baseline
MHA models and our proposed NAT architectures. Among
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Figure 3. NAT feed-forward-nn.TEXT

the baselines, the empirically tuned MHA model achieves
strong performance, while the matched setups with dmodel =
128 and dmodel = 64 provide a fairer comparison to NAT.

NAT variants reach lower validation loss across training,
supporting that explicit modeling of region-region interac-
tions can improve optimization efficiency and generaliza-
tion. We provide three types of NATs. Type-0 feed nor-
malized data into the attention layer (similar to standard
transformers). Type-1 where we do not normalize the resid-
ual stream input to the attention block. Type-2 where we
feed non-normalized residual into the attention block output
(the attention block score) prior to FFN processing.

We find that Type 0 (normalized residual) remains compet-
itive, while Type 1 (unnormalized residual) improves sta-
bility slightly. The strongest performance is obtained with
Type 2 - similar to standard transformer residual stream
additions into the FFN layer. Our results highlight the flexi-
bility of the NAT design in exploring architectural trade-offs
between interpretability and predictive performance.

4. Conclusion
In this work, we introduced the Neuro-Anatomical Trans-
former (NAT), a transformer-based architecture specifically
designed to model large-scale brain dynamics with inter-
pretability, biological realism, and modular structure. Mo-
tivated by the growing intersection of neuroscience and AI
(NeuroAI), we identified key limitations in current trans-
former models when applied to neural systems, particularly
their lack of alignment with neuroanatomy and limited sup-
port for causal or perturbation-driven analysis. NATs ad-
dress these challenges through modular Region-Attention
Blocks (RABs), which explicitly model asymmetric inter-
actions between brain areas and maintain segregated infor-
mation pathways throughout the network (see Section 2).

Figure 4. Validation loss comparison across baseline and NAT
models. Three multi-head attention (MHA) baselines are shown:
(i) the best empirically tuned configuration, similar to prior work
but with additional modifications, and (ii–iii) two matched setups
with dmodel = 128 and dmodel = 64, where dhid = 4 · dmodel. An
attempted run with dmodel = 256 was excluded due to divergence.
NAT variants include both Global and Region FFN modules, each
trained with three residual connection strategies: Type 0 (normal-
ized residual added to attention output), Type 1 (unnormalized
residual), and Type 2 (unnormalized residual plus an additional
FFN residual around the attention output).

Our experiments on widefield calcium imaging data across
16 mouse brain regions (Mitelut et al., 2022) demonstrate
that NATs can match or exceed the performance of stan-
dard transformers while significantly improving anatomical
fidelity and interpretability (see Section 3). These gains
come with only modest architectural constraints and enable
structured comparisons across region–region attention maps,
making it possible to inspect and analyze learned represen-
tations with causal precision. We propose that NATs can
support in silico perturbation experiments and preserve inter-
pretability even in deep, multi-layer transformer stacks when
paired with region-aligned feedforward modules (Fig. 3).

Looking ahead, we propose that NATs could serve as a foun-
dation for safe and interpretable AI systems, including as
a stepping stone toward whole-brain emulation (WBE). As
AI systems grow in complexity, there is a pressing need for
architectures whose internal dynamics can be understood
and manipulated. NATs offer a uniquely promising solu-
tion: a white-box transformer framework that bridges neu-
roscience and alignment research by enabling fine-grained
control, hypothesis testing, and failure mode discovery. In
future work, we plan to expand NATs to richer multimodal
datasets, explore scaling behavior across larger brain archi-
tectures, and develop their use as alignment testbeds and
cognitive simulators. We believe that biologically grounded
architectures like NATs may not only advance our under-
standing of the brain but also inform the design of transpar-
ent, agentic, and safer AI systems.
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A. Related Work

B. Related Work
B.1. Diffusion-based graph priors

Graph-based time series models frequently encode inter-
area structure with a fixed adjacency matrix A ∈ RR×R.
The Diffusion Convolutional Recurrent Neural Network
(DCRNN) models spatial coupling as diffusion over directed
random walks and integrates this with recurrent temporal
dynamics (Li et al., 2018). Its core operator applies bidirec-
tional K-step diffusion filters to region features Xt ∈ RR×d,
thereby propagating information along graph edges before
updating hidden states with gated recurrent units.

B.2. Adaptive adjacency and spatio-temporal
convolutions

Graph WaveNet extends this idea by learning an adaptive
adjacency matrix in addition to using the fixed structural
graph (Wu et al., 2019). Node embeddings are optimized
jointly with the model to produce a dynamic adjacency
Ãadp, which is combined with diffusion powers and dilated
one-dimensional convolutions. This allows the model to
capture both long-range temporal dependencies and flexible,
data-driven inter-area interactions.

B.3. Graph-masked attention

Another line of work applies attention mechanisms con-
strained by graph structure. Graph Attention Networks
(GAT) restrict attention to a node’s neighbors NA(r) and
learn weights αij that modulate information aggregation
(Velickovic et al., 2018). Multi-head attention layers then
allow parallel subspace interactions, while the graph mask
enforces locality and interpretability. This approach has
been widely adopted in spatio-temporal brain modeling,
where neighborhood structure is biologically motivated.

B.4. Latent graph inference

Some approaches infer the interaction graph itself as a latent
variable. Neural Relational Inference (NRI) introduces a
variational autoencoder that simultaneously learns a latent
edge distribution and system dynamics (Kipf et al., 2018).
A GNN encoder infers discrete interaction types between
nodes, while a GNN decoder predicts future trajectories
given sampled edges. This formulation captures directed,
sparse, and potentially dynamic interaction patterns without
requiring a fixed prior adjacency.

B.5. Masked pretraining for time series and graphs

Recent work has also explored masked reconstruction objec-
tives as self-supervised pretraining. For time series, models

such as Ti-MAE and SimMTM mask temporal segments
and reconstruct the missing values to encourage robust rep-
resentations (Li et al., 2023; Dong et al., 2023). In the
graph domain, GraphMAE reconstructs masked node fea-
tures using a scaled cosine error, encouraging embeddings
to capture structural context (Hou et al., 2022). These meth-
ods inject inductive biases by training models to recover
missing information under structured masking.

B.6. Comparison with NAT

Compared to these prior approaches, Neuro-Anatomical
Transformers (NATs) aim to learn region–region relation-
ships directly from task loss, without relying on auxiliary
objectives or fixed priors. Like GAT and NRI, they are ca-
pable of modeling directed and asymmetric interactions, but
they do so through region-conditioned attention rather than
graph message passing or latent-variable inference. NATs
can incorporate external priors in a manner similar to graph-
based methods (e.g., masking logits with Π), yet their core
design is agnostic to explicit graph structure. This makes
them a flexible and interpretable alternative: they retain the
expressive capacity of multi-head attention while maintain-
ing a neuro-anatomical decomposition of interactions.
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